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Multifractal Magnetization on Hierarchical Lattices 
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A new approach is applied to show that the local magnetization of the 
ferromagnetic Ising model on hierarchical lattices has a multifractal structure at 
the critical point. Thef(e) function characterizing its multifractality is presented 
and discussed for the diamond hierarchical lattice. Distinct exact critical 
exponents for the average magnetization and for the local magnetization of 
the deepest sites are found. The average magnetization (as function of the 
temperature) is also calculated. The critical exponent of the susceptibility is 
estimated using finite-size scale arguments. 
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The study of  spin models on hierarchical lattices became relevant as a real- 
space renormal izat ion-group approach  after the Migdal -Kadanoff  RG 
equations (1) were proved to be exact on the d iamond hierarchical lattice 
( D H L  hereafter). (2) Several properties of the Ising model on these lattices 
were established. For  instance, the thermodynamic  limit of the free energy 
has been proved to be well defined. (3'4) The total spontaneous  magnetiza- 
tion has been analytically obtained (41 and the total susceptibility has been 
found to be infinite for T >  To, (4'6) and finite for T <  To.. (4'7) Now,  we show 
in this communica t ion  that the local magnetizat ion of the ferromagnetic 
Ising model  on hierarchical lattices has a multifractal structure. This is 
found through a new approach  that generates an exact recurrence equat ion 
relating the local magnetizat ion of  a given site to the ones of  previous dis- 
tinct hierarchical levels. In addition, our  approach  allows one to obtain 
exact the rmodynamic  functions (such as the magnet izat ion)  and critical 
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exponents. As far as we know, spin models with intrinsic multifractal local 
magnetization have not been reported in the literature. Fractal local 
magnetization has been found in discrete and continuous spin chains in a 
binary random field, but the fractal features resulted from the discreteness 
of the random field. (s) In the present paper, the multifractality is an intrin- 
sic property induced by the topology of the lattice. Actually the hierarchical 
lattices are themselves topological fractal objects in the sense that they are 
scale invariant without being translation invariant. Furthermore, the coor- 
dination number varies exponentially from finite to infinite figures. There- 
fore, fractal features should appear on the thermodynamic and critical 
properties of spin models on these lattices. For instance, the zeros of the 
partition function of the Ising model on the DHL have been shown to have 
a fractal structure. (9) 

We consider here the ferromagnetic Ising model on the simplest 
hierarchical lattice, namely the diamond hierarchical lattice. Starting with 
a bond linking the two roots A and B (so-called terminals by Tsallis (5) and 
surface sites by Kaufman and Griffiths(6)), the DHL is constructed by 
replacing this bond by the DHL's basic cell (see Fig. la). The new bonds 
are also replaced by the basic cell and so successively, giving the different 
N levels of the DHL (see Fig. lb). The reduced Hamiltonian of the spin-l/2 
ferromagnetic Ising model with zero field in an N-level DHL is (the zero- 
level DHL is the initial bond) 

--fiHN=KN ~ ~,~j (1) 

where Ks  is the reduced coupling constant of the exchange interaction 
between all pairs (0')  of nearest neighbor spins of the N-level DHL, and 
the c~'s are the spin variables ( a =  +1). In order to analyze the structure of 
the local magnetization, it is sufficient to consider only the sites of one of 
the shortest paths joining the two roots of the DHL. All the shortest paths 
are equivalent, since each one contains (in a symmetrically arranged way 
with respect to the middle point) all kinds of sites of the DHL with distinct 
coordination numbers and depths with respect to the roots. We can iden- 
tify the sites on this path b y  a pair (s,l), where l is the level 
( /=0 ,  1, 2 ..... N) and s is the position ( s=  1, 3, 5, 7,..., 21 - 1 )  of the site 
within t h e / t h  level with respect to one root (see Fig. lc). If l =  N, then s 
is the chemical distance from the considered site (s, N) to one of the roots, 
say the root A. For example, in Fig. lb, the minimum number of steps 
between the site (7, 3) and the root A is 7. If l<N, then the chemical dis- 
tance s must be calculated in the/-level DHL. For example, in Fig. lb the 
chemical distance of the site (1, 1) and A is 1 (see the bottom of Fig. la). 
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Fig, 1. Diamond hierarchical lattice: (a) One bond replaced by the basic cell. (b) The DHL 
up to three levels. The open circles are the roots. The broken line indicates an arbitrary shor- 
test path joining the roots. (c) The sequence of sites (s, l) appearing in a shortest path between 
the roots A and B for the three-level DHL. 

We found that the local magnetization ms, t of a given site s of t h e / t h  level 
( / =  1 ..... N) is related to the local magnetizations of its nearest neighbor 
sites at t h e / t h  level, one belonging to the ( l -  1)th level and the other to 
the j t h  level ( j - -  0, 1, 2 ..... l - 2), by 3 

rns, l=  Al(ms, , t_  l + m~,,, j )  (2) 

3 Equation (2) can be obtained straightforwardly by evaluating first the local magnetization 
of a site of the last hierarchical level l =  N and of its nearest-neighbor sites as functions of 
the coupling constant KN, the effective fields, and the effective interaction acting upon these 
neighbors. The effective couplings can be obtained by tracing over the spins different from 
these three. Equation (2) is obtained, then, by eliminating the effective fields and the effective 
interaction parameter as functions of the local magnetizations. 
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with s' = (s _ 1 )/2, s" = (s -T- 1)/2 l J, and 

At = tt/(1 + t 2) (3) 

where tt = tanh/(l .  For temperatures below the ferromagnetic critical tem- 
perature Tc, the local magnetization profile of the DHL can be obtained 
from Eqs. (2) and (3), and with the help of the renormalization equation 
for the coupling constants of the DHL, given by 

t,_l = 2t~/(1 + t 4) (4) 

This can be done numerically starting with ml, l=2A1,  which 
corresponds to having the spins at the roots with fixed values a =  1. 4 

However, at the critical temperature one has A t ~ A c = t c / ( l + t ~ ) ~  
0.419643, where t~ is the unstable fixed-point solution of Eq. (4), namely 

4 Actually, to solve Eqs. (2)-(4), it is necessary only to fix one spin in order to break the 
symmetry. However, this leads to an asymmetric magnetization profile. 

Fig. 2. Local magnetization (at the critical point) against spin position (on an arbitrary 
scale) within a shortest path joining the two roots of a DHL with N =  10 levels. Note: the 
average magnetization of this profile does vanish at the N o  oo thermodynamic limit, which 
is not evident from this N =  10 plot. 
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tc = (ac - 2/ac - 1)/3 = 0.543689..., with ac = (3 ~ + 17) 1/3. Therefore the 
magnetization profile at Tc is straightforwardly given by Eq. (2) with Ac 
replacing AI. In Fig. 2 we show the local magnetization profile at Tc of the 
DHL for N = 10 levels. We remark that the average magnetization of this 
magnetization profile at the critical temperature vanishes in the N ~  oo 
thermodynamic limit. It is easy to see that Fig. 2 has no smallest scale. 
For instance, in Fig. 3 we display the magnification of Fig. 2 between 
two deep sites, showing thus its fractal nature. One can show that this 
magnetization profile in the infinite-level limit (thermodynamic limit) is an 
everywhere discontinuous function. For every value of m, there is an 
m A c ~ ( 1 -  A c ) ~ 0 . 7 2 m  discontinuity both to the left and to the right limits. 
We also remark the similarity of the form of Fig. 2 with that of the 
celebrated Weierstrass function, (I~ which is actually continuous 
everywhere but differentiable nowhere. Moreover, it can be shown that the 
local magnetization distribution has a multifractal structure. In fact the 
f (e )  function, which describes how densely the singularities of a measure 
are distributed, (u) can be obtained assuming for our measure the nor- 
malized local magnetization. This can be done numerically by evaluating 
the N ~  oo limit behavior of the reduced double logarithmic plot of the 
measure distribution calculated for a finite N with a box width (2 N), 
where ln(2 -N) is the reducing factor. (I2) Figure 4 displays thef (~)  function 

Fig. 3. Magnification of Fig. 1 between 0.250 and 0.375 on a renormalized scale. 
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corresponding to the measure spectrum of the local magnetization of a 
DHL for N = 2 9  levels which corresponds, in practice, to the thermo- 
dynamic limit for temperatures close to the critical point. Despite the 
slow convergence, Fig. 4 contains most features of the f (~)  function, say: a 
concave curve with a single maximum at the Hausdorff dimension of the 
support (which is one in our case), and an infinite slope at the points in 
which f ( ~ ) =  0. In this figure, we also show what we expect to look like the 
true (dashed l i n e ) f ( e )  function ( N ~  oo limit). The C~mi, and the c~ . . . .  
which reflect, respectively, how the measures of the most concentrated and 
the most rarefied intervals scale with the box width, are calculated exactly. 
Actually, we get 

~min = --ln t~/ln 2 ~-- 0.8791... (5) 

and 

~max = 2 - (ln{(1 - t~)[1 + (1 + 4t~ 1 + 4t~) 1/2] }/ln 2) - 1.0460... 

0~ma x is in extremely good aggreement with the numerical endpoint of the 
graph for N =  29 levels. The em~n as well as the valuefmax(e)= 1 value has 
slow convergence. In the inset of Fig. 4 we show the values Offmax(C0 as a 
function of N-1,  which indicates this convergence. 

The average magnetization (per site) of the entire lattice is defined by 

m = lim 2 + 2 / ms, l (N (6) 
N = > o o  / = l  s = 1 ,3 . . .  

where Y ( N ) =  3(2 + 2 :u) is the number of sites in an N-level DHL, and 
becomes zero at T~., as it should. With the help of Eq. (2) we can show that 
for temperatures below T C 

re(T) = ~ (1 + 2Ai) (7) 
i = 1  

which recovers a previous result. (4) 
From Eqs. (2) and (6) one is able to show that the average magnetiza- 

tion also follows a recursion equation which at Tc reads 

m(N)= �88 +2t~ 1) r e ( N -  1 ) -  ~(t,. ~ ) m ( N - 2 )  (8) 

By assuming that close to the transition temperature m(N) oc ((~tN) [3, 
where 6 t u ~  rcC~tu+ 1, r~ = [(d/dt,+l)t ,] ,~ being equal to (1 + t2) 2, we get 
from (8) the exact value of/~, given by 

fl = ln(2tc)/2 ln(1 + t{) = 0.161734374... (9) 
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/3 is the critical exponent associated with the average magnetization of the 
entire lattice, which has been already obtained by other approaches. (4'~3) 
From Eq. (2), using similar arguments, we also calculate exactly the critical 
exponent/3' corresponding to the measure of the most rarefied box width 
of Fig. 2, say, the normalized local magnetization of the deepest sites of the 
DHL. This leads to 

f l '=  1(1 - l n{ t c [1  + (1 + 4t,. ' + 4tc) l / z] /2} / ln(1  + t2c))~-0.22335... 

One can also calculate from (6) the total magnetization M N ( T ) ,  show- 
ing that for an Nth-level DHL at Tc, Mu(Tc) oc (2/tc) u. Let us assume the 
conjecture made for two- and three-dimensional Ising models, u4) namely, 
that at Tc the magnetization shows a power-law behavior with respect 
to the linear size (L) of the system, that is, M ( L )  oc L D under scale trans- 
formation. We thus obtain for the DHL that MN(T~)oc (2N) D with 
D = ln(2 / t J ln(2)  = 1.87914 .... where D corresponds to the fractal dimension 
of the set of sites of the DHL with arbitrarily small but finite magnetization 
at the critical point. Following ref. 14 and using the finite-size scale argument 
for the magnetization and for the susceptibility per site, we can write 
fl = - v ( D  - 2) and 7 = 2v(D - 1). Since 1/v = 2 ln(1 + t~)/tn 2 = 0.747235..., 
we end up with fi=0.1617343.., and 7=- ln ( t c ) / l n ( l+ t~ )~2 .3530632  .... 
the former recovering the direct calculation [-see Eq. (9)]. 

In summary, we found that the local magnetization of the pure 
ferromagnetic Ising model in the diamond hierarchical lattice has an 
intrinsic multifractal distribution at the critical point. An exact recurrence 
equation has been given for ~the local magnetization of each site for T~< To. 
From this equation several results have been obtained, including the f(~)  
function describing the multifractality, distinct fl-critical exponents for the 
local magnetization of the deepest sites of the DHL and for the average 
magnetization (per site), the fractal dimension of the ensemble of sites with 
finite magnetization at the critical point, and the critical exponent 7 of the 
susceptibility. We remark that an infinite set of fl exponents is expected to 
describe the critical behavior of the infinite classes of sites underlying the 
multifractal local magnetization profile of the DHL. The study of this 
infinite set of exponents is now in progress. 
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